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ABSTRACT

The probability of m correlated random variables drawn from a multivariate
normal distribution being non-negative is:

Exact results for this probability integral are unavailable for m > 3. Ap-
proximations for higher dimensional problems have generally yielded poor
results except for spcial caees, such as compound symmetry, which is of
limited value in practice. The purpose of this paper is to present a gen-
eral approximation of this probability integral. The algorithm developed
here is computationally tractable for m = 50 and accurate for very general
correlational structures. The performance of this algorithm is compared to
results based on Clark's (1961) original approximation, Gaussian quadrature
formulae, and Monte Carlo simulation methods. Application of this approx-
imation to problems of conditional dependence in IRT estimation problems
is discussed.
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1 INTRODUCTION

With the renewed interest in marginal maximum likelihood methods (MML)
in item response theory (Bock and Aitken, 1981), the necessity for approx-
imating orthant probabilities of the multivariate normal distribution has
arisen. In the MML estimation of item parameters, for example, all a < 2n

orthant probabilities must be evaluated in order to obtain the likelihood
of the parameters of a given IRT model. Similarly, the same multivariate
normal orthant probabilities are required to obtain Bayesian estimates of
ability assuming dichotomous scoring.

Because IRT models assume conditional independence among the items,
that is, all association among the n items is completely explained by their
joint association with the latent variables, rn-dimensional Gaussian quadra-
ture formulae have been used to provide the necessary orthant probability
estimates. In this case, the simple 'product formulae' for numerical inte-
gration can be applied, because the residuals of the model have the simple
uncorrelated multivariate normal distribution e - (0,uI), where al is the
so-called item *uniqueness", that is, 1 -a;, and ai is the item factor loading.
However, these numerical integrations become extremely expensive as the
dimensionality of the problem increases. To the extent that the items have a
simple factor structure, these approximations are accurate to any practical
degree, however their behavior with more general correlational structures is
predictably poor and the extent of bias introduced into parameter estimates
is unknown.

In the general case, the probability that m correlated random variables
drawn from a multivariate normal distribution are non-negative is:

fJf 0 .. f00 ,n (, , - ) Z1, X2,.., Zmt.

Exact results for the bivariate normal distribution have been obtained from
the work of Sheppard (see Kendall and Stuart, 1973). David (1953) has
shown that trivariate normal probabilities are a direct extension of Shep-
pard's earlier result. However, exact results for m-variate normal probabil-
ities for m > 3 are unknown.

Kendall (1941), McFadden (1960) and Moran (1948) have developed in-
finite expansions of the quadrivariate normal integral, but these results are
computationally cumbersome. More tractable representations have been
proposed by Abrahanmon (1964), Dutt (1973), Dutt and Lin (1975) and
Childs (1967). Even in the quadrivariate case, however, these approxima-
tions are intractable for general correlational structures and have, therefore,

2

.r•



only been applied under restrictions of compound symmetry or band matri-
ces in which p = .5 just off the main diagonal.

In a previous paper, we have developed an IRT-type model for estimating
trend in correlated proportions (Gibbons and Bock, 1987). In this case the
binary items are not components of the same test, but rather, dichotomous
classifications order -d in time. Since the association between temporally
proximal responses will typically be greater than the association between
temporally distal responses, the assumption of conditional independence is
untenable and residual autocorrelation must be assumed. At the sugges-
tion of James Heckmnan (personal communication) we adapted the so-called
Clark Algorithm (Clark, 1961) to the problem of evaluating the likelihood of
this model. Our modified Clark Algorithm combines both Gaussian quadra-
ture formulae with Clark's original approximation which is extremely fast.
The purpose of this paper is to present details of this modified approxima-.
tion, illustrate its computation, and determine its accuracy in a few relevant
examples.

2 THE CLARK ALGORITHM

Designating positive directions 1 and negative directions 0, we may repre-
sent the probability of the positive orthant of an rn-variate distribution by
P(1,, , 1), that of the negative orthant by P(O, 0,. .. , 0), and that of any
one of the other 2 ' - 2 orthants by inserting the appropriate pattern of I's
and 0's. The Clark algorithm provides a computing approximate for any
orthant of a multivariate normal distribution with arbitrary vector mean
and covariance matrix. Clark (1961) derives the following formulas.

Let any three successive components from an rn-variate vector, M, be
distributed:

W 1 1) ~+ ffi~~,+ 1+
Wi+2 '4 i+2 17,U,+P,,,+2 U,'i+1f,+2Pi+1,i+2 O'i+2

Let r max(y) = yi, and compute the probability that i+1 > e as
follows:
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not =iI ; - ii01

where =1 -
2 0sO,4.1P,,aj+ 1.

Then P(yi41 > P) = - > 0)

the value of the univariate normal distribution function at the standard
deviate -zi+1 .

Now let jj~ = max(yi, yi,) and assume (as an approximation) that

(Yi+2, gi+a) is bivariate normal with means,

,US+)= C(+)= A

1441i~) = E(M+1  = ,(j)+ ~+4(z 1)+,+(zi,

variances

012 (Yi) = Y2+)_eyI=O'22

where

i21)= (',4 + o?~z++ (142+1 + ff2 I)4(_Zj+i) + (Ai + ,t+ik~~z+

and correlation

P~g+IYi+) OiPii+20~(Zi+1) + OU,+IPi+,+2'Z(-Zi+1)

Then,

PSN2= MaX(Y,si+I, Yi+2)) = P ((i+ 2 - Y I> 0) n yi2- yj> 0))

is approximated by

P(Y.+2 > ii+i) = (i+ - i1+ > 0)

2 ~ 2(ji+a) - 21j2 'Pi 0 ~ i I +2))

ai2
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Assuming as a working approximation that f4+ is normally distributed
with the above mean and variance, we may therefore proceed, recursively
from i = I to i = mn - 1, where V.+ is an independent dummy variate with
mean zero, and variance zero (i.e. y.+ = 0).

Then

P(Ym+I = max(yi, Y,. --, S"im~))
= P ((y+ -yi >0) n (yL+ - 2 >0) n ... n (y,,- y",> o))
= P ((-y 1 >O0) n(-y2 > 0) n...fnl(-y",> 0))

approximates the probability of the negative orthant of the specified mul-
tivariate normal distribution. The probability of any other orthant can be
obtained by reversing the signs of the variates corresponding to I's in the
orthant pattern.

3 COMPUTATIONAL EXAMPLE

For computational purposes, it is convenient to set sZ(-z) = 1 - O1(z) and
rewrite Clark's equations as:

M(~iI/+) = JA+ 1 + (Aij - jp,+ 1 )'(zi+I) + Ci+IO(zi+1),
g1 1+ 0 ' 1 +(JA4+ a 4 2 1 214(i

-p~+-

+(&i + i+k+~z~)

0"(gi+,Yi+ = O 2 (Yi+1, Yi+2) + [r(, i2

Given this transformation, the ith step now only requires a single evaluation
of 0t(.) and 0(). For example, suppose that

2 and E =r 2]

5
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P~y,,+ = x~v, ,.., .+,)
= P ( ,,+, w >o) (y,,. - o)n...n (,,,+ - t,, o)

= P(-y >o~r(- >o~r...(-y,>o)



Given these values for p and E, the probability of the negative orthant (- -
-) can be obtained as follows.

First find P(ys > j2) as:

ff - 2o + 0'2 - 20'12

= 3 + 2 - 2(1) =1.732

Z2 = (11 - P2)/C2

= (3 - 2)/1.732 = .577

(j)= U2 + (P1I - U2)'O(Z2) + OO4(z2)

= 2 + (3 - 2)P(.577) + 1.732,0(.577) = 3.30

-(i) = ., 2+a2 (;A +oa- ;A 0),MZ2)

+(p1 + A2) 20(Z2 )

= 6 + 60(.577) + 5(1.732)0(.577) = 13.23

u2()= (i2) 2

= 13.23- 3.302 = 2.34

a'2(P2, Y3) 23 + 3 (,- 23)0Z 2)

- 0(.577) = .72

Therefore;

= ' 2 + -2.34 -2(.72)/= .222

To determine P(js > 0) we set 4 = 0 and Or4 = 0, and compute:

6



O=

= 2.34 + 2 - 2(.72)= 1.703

Z = (A2 - s)/s
= (3.3 - 2)/1.703 = .763

U (S) = P3 + (A'2 - A3)$(zs) + 30(ft)

= 2 + (3.3 - 2)'Z(.763) + 1.7030(.763) = 3.518

e( ]) ;=&3, +0,2 __ (A2 + &I _ I2 _.7),p,(Z3) .-

+(A2 + 0s)s0(ZS)
= 6 + 7.234Z(.763) + 5.3(1.703)0(.763) = 14.307

N3 = 3(2 W3(~)

= 14.307 - 3.5182 = 1.931

o 2(,,) = , - ,,)( _:

=0

Therefore;

( 0-3.518 =

= ( y To -- F-2(0)

Hence, P(0 > js) 0(-2.53) = .006, which is the probability of orthant (-

4 THE MODIFIED CLARK ALGORITHM #1

In our previous paper (Gibbons and Bock, 1987), we noted that the accu-
racy of the Clark approximation diminishes with increasing magnitude of

7



the correlations. If we apply the Clark approximation directly to estimates
of inter-item correlations, it will generally yield biased results due to the
size of correlations. This is true regardless of whether the correlation ma-
trix exhibits the property of conditional independence. Alternatively, if we
examine the residual inter-item correlation matrix at fixed points on the
ability scale, we will observe the identity matrix for conditionaily indepen-
dent solutions or small residual correlations for those item pairs that are
conditionally dependent. In light of this, we evaluate the response function
at several fixed points on the ability scale using Gauss-Hermite quadrature,
and correct these estimates using the Clark algorithm. These corrections de-
pend only on the residual inter-item correlations, which in practice should
be quite small. The first modified Clark algorithm proceeds as follows.

Step 1 Obtain a factor solution of dimension m, using full information fac-
tor analysis for binary data (Bock and Aitken, 1981, and Bock, Gibbons
and Muraki, 1986) if the correlations are unknown or using principal factor
analysis if the item-correlations are known, as in the following simulations.

Step 2 Using the estimated factor loading matrix An, k compute the esti-
mated residual correlation matrix R x n as p,= AujAj, for i $j else
P4 1, where t is the dimensionality of the space we are conditioning on
plus 1. For example, in the unidimensional case, t = 2. This correlation
matrix represents the degree of residual conditional dependence.

Step 3 Given the previous values of item thresholds -y and item factor load-
ings Ai for the t - 1 prinical factors, compute the invariant item parameters
aj (slope) and bi (intercept). For example, in the unidimensional case,

a1  = A, 1A

and

b = -7/ - A)

Step 5 At each point on the ability dimension (i.e. at each quadrature node
Xk ) compute the value of the response function for each item as:

zjk = Cj + a3 Xk

where c1 = -ajbi and Xk are the nodes of the Gauss-Hermite polynomial
(see Stroud and Sechrest, 1966).

8



Step 6 At each quadrature point, substitute the values of zib for the mean
vector 1 and R' for the covariance matrix E and compute the Clark approxi-
mated probability C1 (Xk). Accumulating these probabilities over all quadra-
ture nodes for a given response pattern (zj) yields the desired marginal
probability estimate

- CI(X,)A(Xh,)
k=1

where A(Xk) is the corresponding weight at quadrature node X1.
We note that in practice, the effect of assuming normality of the max-

imum of two jointly normal variables, produces probability overestimates
in the tails of the distribution. As such, we apply an empirically based
correction factor to these probability estimates which involves raising the
Clark adjusted probability estimate to the power 1.3. This correction factor
appears to provide the neccessary adjustment across the entire quadrature
space.

5 THE MODIFIED CLARK ALGORITHM #2

Algorithm #1 is computationally expensive, because the Clark approxima-
tion must be evaluated for each response pattern at every point in the
quadrature space. In a problem with 1000 unique response patterns and
two principal factors, each with 10 quadrature points, the Clark approxima-
tion must be invoked 100,000 times per iteration. An alternate approach is
to simply use the Clark approximated probability as a correction term, ap-
plied directly to the usual probability estimate obtained from the quadrature
solution; that is:

00
h(;,) =C P1 ()()RM (O )

q

= C, E P(Xk)A(Xk)
k=1

where



= J_ [ l[,o(e)]"[i - ,, (X)Jl'-'](e)d(9)

=1j=1
q a

Returning to the previous example of 1000 unique response patterns and
10 quadrature points in each of two dimensions (i.e. 100 points in total), the
Clark algorithm need only be invoked 1000 times per iteration; that is, once
for each response pattern in contrast to 100,000 times for algorithm #1.

The probabilities obtained using algorithm #2 differ from those obtained
from algorithm #1 in that they will not sum to unity even if all response
patterns are realized in the sample. When the number of items is small, say
ten or les, these probabilities can be normalized to yield the appropriate
metric; however, in larger problems (i.e. with eleven or more items) normal-
ization is not possible, because all patterns generally are not realized in even
large samples. We note, however, that maximum likelihood estimation does
not require normalized probabilities as long as their relative magnitudes are
invariant to transformation of scale. This condition does hold for algorithm
#2.

6 ILLUSTRATION

To examine the accuracy of the modified Clark Algorithm, we designed the
following limited simulation study. First, we simulated one million five-
variate normal deviates for each of the following conditions:

1) compound symmetric matrices with p = 0.2 through p = 0.8. For exam-
ple.

1.0
0.5 1.0

R 0 0.5 0.5 1.0
0.5 0.5 0.5 1.0
0.5 0.5 0.5 0.5 1.0

2) Autocorrelated matrices with p = 0.2 through p = 0.8. For example,

10



1.

05 1.01
R = 0.25 0.5 1.0

0.125 0.25 0.5 1.0 ]
L0.0625 0.125 0.25 0.5 1.0j

9) Conditionally dependent correlation matrices with principal factor load-
ings Of All = A12 = A13 = AN4 = Aus ranging from 0.5 to 0.7 and two method
related factors, the first with A21 = A22 = A2s ranging from 0.2 through 0.7
anld A24 = A,5 = 0.0, and the second with A31 = A32 = A33 = 0.0 and
A34 = A35 ranging from 0.2 through 0.7.

For example, the correlation matrix corresponding to factor pattern ma-
trix:

0.7 0.3 0.01
0.7 0.3 0.0

A=[0.7 0.3 0.0
0.7 0.0 0.3
0.7 0.0 0.3

i1.

.0.58 1.0
R= 0.805 1.0

0.49 0.49 0.49 1.0
0.49 0.49 0.49 0.58 1.0 J

In each of the above simnulated conditions, the mean vectors were zero,
therefore, the binary response patterns were obtained by dichotomizing the
simulated normal deviates at zero. The dichotomized response patterns
were then sorted and unique patterns and their respective frequencies were
accumulated. When divided by one million, these frequencies yield the so
called Monte Carlo probability estimates which should be exact to at least
four decimal places; that is, the standard error of the simulated probabilities
is:

which has a maximum value of:



.5(1-.5) .0 0
. ) .0005

Accuracy of the estimated probabilities was determined by computing
the average absolute deviation for each method (i.e. the average absolute
difference between Monte Carlo and Clark estimates over all response pat-
terns).

In an effort to examine the properties of these approximations in larger
sets of items, that are more typical in practice, we produced two 10-item
simulations. The first, consisted of ten million multivariate normal deviates
for the compound symmetric cae (p = 0.5), and the second for the condi-
tionally dependent example with principal factor loadings of Ali = 0.6 and
method related factor loadings of A2,1 ... A2,10 = 0.4 and As,11 ... As, 2o0 = 0.4.

7 RESULTS

Results of the simulations are displayed in Tables 1-5. Inspection of Table
1, which displays results for the five-item compound symmetric case, reveals
that on average, both the quadrature solution and the modified Clark al-
gorithm #2, recover the Monte Carlo estimates to four decimal places (i.e.
average difference p = 0.5, .0002) whereas the modified Clark algorithm #1
is slightly less accurate (i.e. average difference p = 0.5, .0009). In contrast,
the original Clark algorithm is inferior to the other methods and this in-
feriority increases with larger correlations (p = 0.8, average difference =
.0163). These results are exactly as expected for a conditionally indepen-
dent correlational structure. In contrast, inspection of Table 2 reveals that
autocorrelation produces inferior estimates for the quadrature solution (eg.
p = 0.5, average difference = .0070) whereas the modified Clark algorithms
produced more consistent estimates across the entire range (eg. p = 0.5,
average difference for algorithm #1 = .0041 and for algorithm #2 = .0036).
Algorithm #2 was in general, slightly better than algorithm #1. The orig-
inal Clark algorithm produced reasonable estimates through p = 0.5, but
deteriorated quickly for values of p > 0.5. Since the elements of the correla-
tion matrix become more homogeneous for extreme values of p (eg. p = 0.8)
it is not surprising that the performance of the quadrature solution stabilized
for values of p > 0.6.

In terms of five-item conditionally dependent correlational structures
(see Table 3), the modified Clark algorithms performed similarly whereas
the original Clark algorithm and the quadrature solution were consistently

12



inferior, for even moderate dependence (AX or A3, > 0.3). The modified
Clark algorithm #2 produced average differences that were slightly smaller
than algorithm #1 and as little as one-sixth the size of the standard quadra-
ture solution. Overall, performance was better for solutions in which the
principal factor loadings were smaller (eg. Alu = 0.5, A2 = 0.5,A31 = 0.0,
average difference for algorithm #1 = .0034, average difference for algorithm
#2 = .0031, average difference for original Clark = .0041 and average differ-
ence for quadrature = .0084 versus All = 0.7, A21 = 0.5, A31 = 0.0, algorithm
#1 = .0068, algorithm #2 = .0048, original Clark = .0091, and quadrature
-. 0099).

Results for the larger item-sets are presented in Table 4 for the compound
symmetric case and Table 5 for the conditional dependent case. In general,
results for the larger item-sets parallel those of the smaller item-sets. For
the compound symmetric case (p = 0.5) the average differences were .000065
for algorithm #1, .000007 for algorithm #2, .000007 for the quadrature
solution. For the conditionally dependent case (Al, = 0.6, A2, = 0.4 or 0.0
and A3, = 0.4 or 0.0), the average differences were .000218 for algorithm
#1, .000242 for algorithm #2, .000329 for the quadrature solution.

8 DISCUSSION

The results of this study clearly demonstrate that when the assumption of
conditional independence is violated, bias in the standard IRT probability
estimates are produced. Both modified Clark algorithms presented here
minimize this bias; however, algorithm #2 produces slightly more accurate
results than algorithm #1 for small numbers of items, at a remarkable sav-
ings in computation. Algorithm #2 decreases the required computation by
a factor of q"', where m is the number of underlying dimensions and q is
the number of quadrature points in each dimension. When compared to
the standard quadrature solution, algorithm #2 requires an additional a
evaluations of the Clark algorithm, where a is the number of uniquely ob-
served response patterns. Conversely, when method related factors do exist,
multiple-factor solutions will greatly increase the computational complex-
ity of the standard IRT approach, whereas no increase in computation is
required for algorithm #2.

It is important to point out that the use of these approximations should
not replace multiple factor solutions where the additional factors contribute
to our understanding of individual differences. Indeed, the methods de-
scribed here treat these potentially meaningful effects as errors of measure-

13



ment. By allowing for more general types of measurement variability, these
methods can mask important characteristics of item-person interactions.
There are, however, situations where small method related effects confound
our ability to accurately characterize the dominant dimension of interest,
because the inter-item association is not strictly a function of a single un-
derlying trait. In these cases, the ability to segment these more complex
measurement errors from our estimates of the central trait or aptitude of
interest is a highly desirable goal of measurement.

Our future research in the application of the Clark algorithm for likeli-
hood evaluation of IRT models, will focus on the estimation of ability. When
method related factors violate the assumption of conditional independence,
current methods for estimating ability (Bock and Aitken, 1981) will pro-
duce incorrect results. Some preliminary work in this area suggests that the
variance in Bayes "expected a posterior? estimates (EAP) for fixed levels
of ability, increases by a factor of 2 to 3 in the presence of even moderate
dependence. Substituting Clark estimates for the conditional probabilities
that are usually employed in calculating EAP estimates should account for
this "extra" normal variability, and therefore, provide more accurate ability
estimates.

In addition, we will also further explore the difference between our two
modified Clark algorithms, by focusing on their behavior at individual points
in the quadrature space. In this way, we hope to even further improve the
performance of algorithm #1 relative to algorithm #2, and perhaps, develop
a third procedure which is an improvement over both.
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TABLE 1
COMPOUND SYMMETRY

Average Difference
r Algorithm #1 Algorithm #2 Quadrature Clark
.2 0.0007 0.0003 0.0003 0.0022
.3 0.0011 0.0003 0.0003 0.0034
.4 0.0019 0.0002 0.0003 0.0049
.5 0.0009 0.0002 0.0003 0.0068
.6 0.0016 0.0002 0.0002 0.0091
.7 0.0022 0.0002 0.0002 0.0122
.8 0.0006 0.0006 0.0007 0.0163
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TABLE 2
AUTOCORRELATION

Average Difference
p Algorithm #1 Algorithm #2 Quadrature Clark
.2 0.0013 0.0013 0.0037 0.0017
.3 0.0022 0.0021 0.0051 0.0026
.4 0.0031 0.0028 0.0062 0.0037
.5 0.0040 0.0036 0.0070 0.0050
.6 0.0050 0.0044 0.0075 0.0067p
.7 0.0054 0.0051 0.0075 0.0090
.8 0.0060 0.0054 0.0071 0.0121
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Table 3
CONDITIONAL DEPENDENCE

Average Difference
Al CD Algorithm #1 Algorithm #2 Quadrature Clark

.5 .2 0.0011 0.0005 0.0014 0.0023
.3 0.0016 0.0011 0.0031 0.0024
.4 0.0022 0.0020 0.0054 0.0031
.5 0.0034 0.0031 0.0084 0.0041
.6 0.0047 0.0045 0.0121 0.0057
.7 0.0075 0.0065 0.0173 0.0083

.6 .2 0.0018 0.0006 0.0015 0.0034
.3 0.0025 0.0014 0.0032 0.0037
.4 0.0031 0.0025 0.0058 0.0046
.5 0.0047 0.0039 0.0089 0.0060
.6 0.0070 0.0058 0.0130 0.0081
.7 0.0123 0.0083 0.0204 0.0120

.7 .2 0.0015 0.0008 0.0016 0.0052
.3 0.0026 0.0018 0.0036 0.0057
.4 0.0041 0.0031 0.0063 0.0070
.5 0.0068 0.0048 0.0099 0.0091
.6 0.0117 0.0073 0.0159 0.0125
.7 0.0242 0.0170 0.0305 0.0229
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Table 4
COMPOUND SYMMETRY

p = 0.5
25 PATTERNS FOR 10 ITEMS

Pattern Algorithm #1 Algorithm #2 Quadrature Monte Carlo

1111111111 .097932 .091068 .090469 .090955
1111111110 .009605 .009115 .009096 .009055
1111111101 .009229 .009119 .009095 .009049
1111111100 .002018 .002015 .002018 .002011
1111111011 .008887 .009122 .009095 .009094
1111111010 .0019"8 .002016 .002018 .002024
1111111001 .001980 .002017 .002018 .002008
1111111000 .000793 .000758 .000761 .000758
1111110111 .008578 .009125 .009095 .009077
1111110110 .001917 .002017 .002018 .002021
1111110101 .001930 .002018 .002018 .002013
1111110100 .000780 .000758 .000761 .000759
1111110011 .001948 .002019 .002018 .002018
1111110010 .000779 .000758 .000761 .000747
1111110001 .000781 .000758 .000761 .000769
1111110000 .000478 .000432 .000434 .000436
1111101111 .008302 .009126 .009095 .009126
1111101110 .001874 .00201T .002018 .002050
1111101101 .001885 .002018 .002018 .002015
1111101100 .000768 .000758 .000761 .000741
1111101011 .001901 .002019 .002018 .002040
1111101010 .000767 .000768 .000761 .000753
1111101001 .000768 .000759 .000761 .000750
1111101000 .000473 .000432 .000434 .000433
1111100111 .001924 .002019 .002018 .002037

REMAINING PATTERNS .831716 .836967 .837527 .837249

AVERAGE DIFFERENCE .000065 .000007 .000007
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Table 5
CONDITIONAL DEPENDENCE

Ai = 0.6
A3, and A , = 0.4 or 0.0',

25 PATTERNS FOR 10 ITEMS

Pattern Algorithm #1 Algorithm #2 Quadrature Monte Carlo

1111111111 .058630 .09903 .049837 .071364
1111111110 .006145 .010582 .007744 .008396
1111111101 .007586 .010753 .007744 .008384
1111111o0 .002818 .002365 .002115 .002726
1111111011 .007119 .010809 .007744 .008387
1111111010 .002676 .002399 .002115 .002707
1111111001 .002645 .002432 .002115 .002743
1111111000 .001620 .00099 .000891 .001767
1111110111 .006694 .010750 .007744 .00432
1111110110 .002594 .002414 .002115 .002732
1111110101 .002526 .002429 .002115 .002723
1111110100 .001582 .1006 .000889 .001743
1111110011 .002482 .002438 .002115 .002749
1111110010 .001572 .001012 .000889 .001762
1111110001 .001547 .001016 .0008m1 .001751
1111110000 .001434 .000732 .000539 .002087
1111101111 .006241 .010513 .007744 .008455
1111101110 .00245M .00241 .00211 .0027641111101110 .002570 .002417 .002115 .002767 .Ulll101101 .002458 .002409 .002116 .002741

1111101100 .001592 .001025 .000889 .001752
1111101011 W02370 W02396 .002115 .002723 j
1111101010 .001561 .001021 .000889 .001760
1111101001 .001518 .001015 .000889 .001744

1111101000 .001444 .000748 .000539 .002076
1111100111 .002300 .002362 .002115 .002720

REMAINING PATTERNS .866271 .814880 .882800 .842793

AVERAGE DIFFERENCE .000218 .000242 .000329
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